Chapter 5

The BNET Procedure

Contents
Overview: BNET Procedure . . . . . . . . . . .. . . ... . 48
PROC BNET Features . . . . . . . . . .. . . it 48
Using CAS Sessions and CAS Engine Librefs . . . . . .. ... ... ... ..... 48
Getting Started: BNET Procedure . . . . . . . . .. ... ... ... 49
Structure Learning . . . . . . . . ... 50
Probability Table . . . . . . . . .. . L 51
Variable Selection . . . . . . . ... 51
Syntax: BNET Procedure . . . . . . . . . . . .. 52
PROC BNET Statement . . . . . . . . . . . ittt e e e e e 52
AUTOTUNE Statement . . . . . . . . . . . ittt e e e e 57
CODE Statement . . . . . . .. ... e 63
FREQ Statement . . . . . . . . . . . . . e e e e 64
ID Statement . . . . . . .. L e e e 64
INPUT Statement . . . . . . . . .. o it e et e e e e e 64
OUTPUT Statement . . . . . . . ... ..ttt 64
PARTITION Statement . . . . . . . . . . . . ottt e i e e 65
SAVESTATE Statement . . . . . . . . . . . . 0 vttt 66
TARGET Statement . . . . . . . ... ... 66
Details: BNET Procedure . . . . . . . ... .. ... ... 66
Independence Tests . . . . . . . . ... 66
Variable Selection . . . . . . . .. . 68
Structure Learning . . . . . . . . ... 68
Parameter Learning . . . . . . . . ... 69
Displayed Output. . . . . . . . . . . e 70
ODS Table Names . . . . . . . . . o o it e e e 71
Examples: BNET Procedure . . . . . . . . .. .. ... . ... 72
Example 5.1: Naive Bayesian Network . . . . .. ... ... .. ... ....... 72
Example 5.2: Tree-Augmented Naive Bayesian Network . . . . . . . ... ... ... 72
Example 5.3: Parent-Child Bayesian Network . . . . . . . . ... ... ... ..... 73
Example 5.4: Markov Blanket . . . . . . . ... .. L oo 74
Example 5.5: Bayesian Network-Augmented Naive Bayesian Network . . . . .. .. 74
Example 5.6: Model Selection . . . . . .. ... ... ... L. 75
References . . . . . . . . . . 79




48 4 Chapter 5: The BNET Procedure

Overview: BNET Procedure

The BNET procedure learns a Bayesian network from an input data table in SAS Viya. A Bayesian network
is a directed acyclic graphical model in which nodes represent random variables and the links between
nodes represent conditional dependency of the random variables. Because the Bayesian network provides
conditional independence structure and a conditional probability table at each node, the model has been used
successfully as a predictive model in supervised data mining. For more information about Bayesian networks,
see Pearl (1988).

The BNET procedure can learn different types of Bayesian network structures, including naive, tree-
augmented naive (TAN), Bayesian network-augmented naive (BAN), parent-child Bayesian network, and
Markov blanket. PROC BNET performs efficient variable selection through independence tests, and it selects
the best model automatically from the specified parameters. It also generates SAS DATA step code or an
analytic store to score data. It can load data from multiple nodes and perform computation in parallel.

PROC BNET Features
The BNET procedure has the following features:

e structure learning through efficient local learning algorithms

o cfficient variable selection through independence tests

e automatic selection of the best parameters by using a validation data subset
e learning of different types of Bayesian network structures

e handling of both nominal and interval input variables

e binning of the interval input variables

e handling of missing values

e multithreading during the training and scoring phases

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This
section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to
the CAS session. It assumes that you have a CAS server already available; contact your system administrator
if you need help starting and terminating a server. This CAS server is identified by specifying the host on
which it runs and the port on which it listens for communications. To simplify your interactions with this
CAS server, the host information and port information for the server are stored as SAS option values that are
retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port
values for the server at your site by using the following statements:



Getting Started: BNET Procedure 4 49

proc options option=(CASHOST CASPORT) ;
run;

In addition to starting a CAS server, your system administrator might also have created a CAS session and a

CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the
CAS server as shown in the following statements:

cas mysess;

libname mycas cas sessref=mysess;
The CAS statement creates the CAS session named mysess, and the LIBNAME statement creates the
mycas CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the
CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from
the corresponding SAS option values.

If you have created the mysess session, you can terminate it by using the TERMINATE option in the CAS
statement as follows:
cas mysess terminate;

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared
Concepts” on page 11 in Chapter 3, “Shared Concepts.”

Getting Started: BNET Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table
by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table
name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 11
and “Loading a SAS Data Set onto a CAS Server” on page 12 in Chapter 3, “Shared Concepts.”

Consider a study of the analgesic effects of treatments on elderly patients who have neuralgia. Two test
treatments and a placebo are compared. The response variable is whether the patient reported pain or not.
Researchers recorded the age and gender of 60 patients and the duration of complaint before the treatment
began. The following DATA step creates the data set Neuralgia:

Data Neuralgia;
input Treatment $ Sex $ Age Duration Pain $ @Q;

datalines;
P F 68 1 No B M 74 16 No P F 67 30 No
P M 66 26 Yes B F 67 28 No B F 77 16 No
A F 71 12 No B F 72 50 No B F 176 9 Yes
A M 71 17 Yes A F 63 27 No A F 69 18 Yes
B F 66 12 No A M 62 42 No P F 64 1 Yes
A F 64 17 No P M 74 4 No A F 72 25 No
P M 70 1l Yes B M 66 19 No B M 59 29 No
A F 64 30 No A M 70 28 No A M 69 1 No
B F 78 1 No P M 83 1 Yes B F 69 42 No
B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
A M 70 12 No A F 69 12 No B F 65 14 No
B M 70 1 No B M 67 23 No A M 76 25 Yes



50 4 Chapter 5: The BNET Procedure

P M 78 12 Yes B M 77 1 Yes B F 69 24 No
P M 66 4 Yes P F 65 29 No P M 60 26 Yes
A M 78 15 Yes B M 75 21 Yes A F 67 11 No
P F 72 27 No P F 70 13 Yes A M 75 6 Yes
B F 65 7 No P F 68 27 Yes P M 68 11 Yes
P M 67 17 Yes B M 70 22 No A M 65 15 No
P F 67 l1 Yes A M 67 10 No P F 72 11 Yes
A F 74 1 No B M 80 21 Yes A F 69 3 No

’

The Neuralgia data set contains five variables: Treatment, Sex, Age, Duration, and Pain. The last variable,
Pain, is the target variable. Pain=Yes indicates that the patient felt pain, and Pain=No indicates no pain. The
variable Treatment is a nominal variable that has three levels: A and B represent the two test treatments, and
P represents the placebo treatment. The gender of the patients is indicated by the nominal variable Sex. The
variable Age is the age of the patients, in years, when treatment began. The duration of complaint, in months,
before the treatment began is indicated by the variable Duration.

You can load the Neuralgia data set into your CAS session by naming your CAS engine libref in the first
statement of the following DATA step:

data mycas.neuralgia;
set neuralgia;
run;

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately
defined CAS engine libref.

Structure Learning

The following statements use the BNET procedure to learn a Bayesian network with Treatment and Sex as
nominal variables and Age and Duration as interval variables. The two interval variables are binned into three
equal-width levels.

proc bnet data=mycas.neuralgia numbin=3 outnetwork=mycas.network;
target Pain;
input Treatment Sex/level=nominal;
input Age Duration/level=interval;
ods output varselect=varselect;
run;

The following statements produce Figure 5.1, which shows the network structure that PROC BNET has
learned. There are three variables in the network: Treatment is the parent of Pain, and Pain is the parent of
Age. From the structure, you can infer that Pain is dependent on Treatment and is also dependent on Age, but
is (conditionally) independent of Sex or Duration.

proc print data=mycas.network noobs label;
var _parentnode_ _childnode_;
where _type ="STRUCTURE";

run;



Figure 5.1 Network Structure

Parent
Node

Treatment Pain

Pain

Child
Node

Age

Variable Selection 4 51

Probability Table

The following statements produce Figure 5.2, which shows the conditional probability table for each node
in the network. You can use these probability tables for scoring or inferences or both. The conditional
probability tables together with the network structure determine the Bayesian network.

proc print data=mycas.network noobs label;
var _parentnode_ _parentcond _childnode_ _childcond_ _value_;

where _type ="PROBABILITY";
run;

Figure 5.2 Probability Table

Parent Parent
Node Condition

Treatment A
Treatment A
Treatment B
Treatment B
Treatment P
Treatment P
Pain Yes
Pain Yes
Pain Yes
Pain No
Pain No
Pain No

Child
Node

Child
Condition

Treatment A

Treatment B

Treatment P

Pain
Pain
Pain
Pain
Pain
Pain
Age
Age
Age
Age
Age
Age

Yes
No
Yes
No
Yes
No
<67
<75
>=75
<67
<75
>=75

Value
0.33333
0.33333
0.33333
0.27273
0.72727
0.27273
0.72727
0.72727
0.27273
0.17857
0.35714
0.46429
0.31579
0.60526
0.07895

Variable Selection

The network in Figure 5.1 does not include variables Sex or Duration, because PROC BNET automatically
selects those variables by using independence tests. PROC BNET produces Figure 5.3, which shows the
variable selection results. PROC BNET removes Duration from the network because the p-value of the
chi-square and G-square statistics of Duration are greater than 0.05 (the default value for the ALPHA= option,
which is not specified). Sex is conditionally independent of Pain given Treatment; therefore, PROC BNET

also removes it from the network.



52 4 Chapter 5: The BNET Procedure

Figure 5.3 Variable Selection
The BNET Procedure

Variable Selection

Mutual Conditional
Variable Selected Chi-Square Pr > ChiSq G-Square Pr > GSq Information DF Variables
Sex No 7.20000 0.0658 7.59454  0.0552 0.34481 3 Treatment
Treatment Yes 13.71429 0.0011 14.02297  0.0009 0.45652 2
Age Yes 14.60003 0.0007 15.27118  0.0005 0.47404 2
Duration No 2.25795 0.3234 3.34851 0.1874 0.23298 2

Syntax: BNET Procedure

The following statements are available in the BNET procedure:

PROC BNET < options> ;
AUTOTUNE < options> ;
CODE FILE=filename ;
FREQ variable ;
ID variables ;
INPUT variables /< LEVEL=INTERVAL | NOMINAL > ;
OUTPUT OUT=CAS-libref.data-table < option> ;
PARTITION partition-option ;
SAVESTATE RSTORE=CAS-libref.data-table ;
TARGET variable ;

The PROC BNET statement, the TARGET statement, and the INPUT statement are required. You can specify
only one TARGET statement, but you can specify multiple INPUT statements. The following sections
describe the PROC BNET statement and then describe the other statements in alphabetical order.

PROC BNET Statement
PROC BNET < options> ;

The PROC BNET statement invokes the procedure. Table 5.1 summarizes important options in the PROC
BNET statement by function.

Table 5.1 PROC BNET Statement Options

Option Description

Data Options

DATA= Specifies the input data set

NUMBIN= Specifies the binning number for interval variables
PRESCREENING= Specifies the initial screening for the input variables

VARSELECT= Specifies the selection for the input variables




PROC BNET Statement 4 53

Table 5.1 continued

Option Description

MISSINGINT= Specifies how to handle missing values for interval variables

MISSINGNOM= Specifies how to handle missing values for nominal variables

Independence Test Options

INDEPTEST= Specifies the methods for independence tests

ALPHA= Specifies the significance level for independence tests by using
chi-square or G-square statistics

MIALPHA= Specifies the significant level for independence tests by using mu-

tual information

Structure Learning Options

STRUCTURE= Specifies the network structure types
PARENTING= Specifies the structure learning methods
MAXPARENTS= Specifies the maximum number of parents allowed for each node

in the network

Model Selection Options
BESTMODEL Requests that the best model be selected

You can specify the following options:

ALPHA=number
specifies the significance level for independence tests by using chi-square or G-square statistics. The
valid range is O to 1, inclusive. If you want to choose the best model among several, you can specify
up to five numbers, separated by spaces. If you specify multiple numbers but you do not specify the
BESTMODEL option, PROC BNET uses the first number and ignores the remaining numbers.

By default, ALPHA = 0.05.

BESTMODEL
requests that the best model be selected by using a validation data subset. You can specify the validation
data subset by using the PARTITION statement. If you specify this option, you can specify multiple
values for the ALPHA=, PRESCREENING=, VARSELECT=, STRUCTURE=, and PARENTING=
options. PROC BNET uses the misclassification errors on the validation data to automatically decide
the best set of parameter values among these options.

By default, a best model is not selected.

NOTE: If you specify BESTMODEL in PROC statement, then AUTOTUNE statement will be
ignored.

DATA=CAS-libref.data-table
names the input data table for PROC BNET to use. CAS-libref.data-table is a two-level name, where

CAS-libref refers to a collection of information that is defined in the LIBNAME statement and
includes the caslib, which includes a path to the data, and a session identifier, which
defaults to the active session but which can be explicitly defined in the LIBNAME



54 4 Chapter 5: The BNET Procedure

data-table

statement. For more information about CAS-libref, see the section “Using CAS
Sessions and CAS Engine Librefs” on page 48.

specifies the name of the input data table.

INDEPTEST=ALL | CHIGSQUARE | CHISQUARE | GSQUARE | MI
specifies the method for independence tests. You can specify the following values:

ALL

CHIGSQUARE

CHISQUARE

GSQUARE

uses the chi-square, the G-square statistics, and the normalized mutual information
for independence tests. A variable is independent of the target if both the p-values
of the chi-square and the G-square statistics are greater than the specified ALPHA=
value and the normalized mutual information is less than the value that is specified
in MIALPHA= option.

uses both the chi-square and the G-square statistics for independence tests. A
variable is independent of the target if both the p-values of the chi-square and the
G-square statistics are greater than the specified ALPHA= value.

uses the chi-square statistics for independence tests. A variable is independent of
the target if the p-value of the statistics is greater than the specified ALPHA= value.

uses the G-square statistics for independence tests. A variable is independent of the
target if the p-value of the statistics is greater than the specified ALPHA= value.

uses the normalized mutual information for independence tests. A variable is
independent of the target if the normalized mutual information is less than the value
that is specified in the MIALPHA= option.

By default, INDEPTEST=CHIGSQUARE.

MAXPARENTS=integer

specifies the maximum number of parents that is allowed for each node in the network structure. The
valid range is 1 to 16, inclusive. If you specify the BESTMODEL option, PROC BNET calculates
from 1 to integer and decides the best number of parents.

By default, MAXPARENTS=S.

MIALPHA=number

specifies the threshold for independence tests by using mutual information. The valid range is O to 1,

inclusive.

By default, MIALPHA = 0.05.

MISSINGINT=IGNORE | IMPUTE
specifies how to handle missing values for all interval input variables. This option applies to training
data, validation, testing data and any data used for scoring. You can specify the following values:

IGNORE
IMPUTE

ignores the observations that have missing values in any of the interval variables.

replaces the missing values in any interval variable by the mean of the variable.

By default, MISSINGINT=IGNORE.



PROC BNET Statement 4 55

MISSINGNOM=IGNORE | IMPUTE | LEVEL
specifies how to handle the missing values for all nominal input variables. You can specify the
following values:

IGNORE ignores the observations that have missing values in any of the nominal variables.
IMPUTE replaces the missing values in any nominal variable by the mode of the variable.
LEVEL treats the missing values in any nominal variable as a separate level of the variable.

By default, MISSINGNOM=IGNORE.

NTHREADS=number-of-threads
specifies the number of threads to use. The default is the minimum CPU count of all the nodes.

NUMBIN=/nteger

NBIN=/nteger
specifies the number of binning levels for all interval variables. PROC BNET bins each interval
variable into integer equal-width levels. The valid range of integer is 2 to 1024, inclusive.

By default, NUMBIN=5.

OUTNETWORK=CAS-libref.data-table

OUTNET=CAS-libref.data-table
names the CAS data table to contain the network structure and the probability distributions. CAS-
libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and
data-table specifies the name of the output data table. For more information about this two-level name,
see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 48.

PARENTING=BESTONE | BESTSET
specifies the algorithm for orienting the network structure. You can specify the following values:

BESTONE uses a greedy approach to determine the parents of each node; that is, for each node,
the best candidate is added as a parent of the node in each iteration.

BESTSET determines the best set of variables among possible candidate sets as the parents
of each node; that is, instead of adding one variable in an iteration, PROC BNET
tests multiple sets of variables together and chooses the best set as the parents of
the node.

If you want to choose between the two methods, you can specify both of them and also specify the
BESTMODEL option. If you specify both methods but you do not specify the BESTMODEL option,
PROC BNET uses the first specified method, and ignores the other.

By default, PARENTING=BESTSET.

PRESCREENING=0 | 1
specifies the initial screening for the input variables. You can specify the following values:

0 uses all the input variables.

1 uses only the input variables that are dependent on the target.



56 4 Chapter 5: The BNET Procedure

If you want to choose the best model with or without prescreening, you can specify PRESCREEN-
ING=0 1 or PRESCREENING= 1 0 and also specify the BESTMODEL option. If you specify both but
you do not specify the BESTMODEL option, PROC BNET uses the first specified value, and ignores
the other.

By default, PRESCREENING=I1.

PRINTTARGET
generates the table, “Predicted Probability Variables,” which displays the target variable and the
predicted probability variables and the table “Predicted Target Variable” which displays the predicted
target variable.

By default, these two tables are not generated.

STRUCTURE=MB | NAIVE | PC | TAN
specifies the network structure. Together with the MAXPARENTS= option, this option determines
which network structure the procedure learns from the training data. You can specify the following
values:

MB learns the Markov blanket of the target variable. The Markov blanket includes
the parents, the children, and the other parents of the children. After learning the
Markov blanket, PROC BNET further determines the parents of the target, the
links from the parents to the children, and the links among the children. When you
specify STRUCTURE=MB, the procedure learns the Markov blanket regardless of
the values of PRESCREENING= and VARSELECT= options.

NAIVE assumes a naive Bayesian network structure (that is, the target has a direct link
to each input variable). If MAXPARENTS=1, the structure is a naive Bayesian
network (NB). If MAXPARENTS is greater than 1, the structure is a Bayesian
network-augmented naive Bayesian network (BAN).

PC learns the parent-child Bayesian network structure (PC). STRUCTURE=PC differs
from STRUCTURE=NAIVE in that some input variables could be learned as the
parents of the target variable. In addition, links from the parents to the children and
among the children are also possible in PC.

TAN learns the tree-augmented naive Bayesian network structure. The TAN structure
includes a direct link from the target to each input variable plus a tree structure
among the input variables.

If you want to choose the best structure among several structures, you can specify multiple values
in any combination, separated by spaces, and also specify the BESTMODEL option. If you specify
multiple structures but you do not specify the BESTMODEL option, PROC BNET uses the first value
that you specify, and ignores the rest.

By default, STRUCTURE=PC.
VARSELECT=0 1|23

specifies how input variables are selected beyond the prescreening. You can specify the following
values:



AUTOTUNE Statement 4 57

0 uses all input variables that remain after the initial screening is performed as
specified in the PRESCREENING= option.

1 tests each input variable for conditional independence of the target variable given
any other input variable. This type of selection uses only the variables that are
conditionally dependent on the target given any other input variable.

2 tests each input variable further for conditional independence of the target variable
given any subset of other input variables. This type of selection uses only the
variables that are conditionally dependent on the target given any subset of other
input variables.

3 determines the Markov blanket of the target variable and uses only the variables in
the Markov blanket.

If you specify VARSELECT=1, 2, or 3, PROC BNET automatically tests each input variable for
unconditional independence of the target regardless of the value of the PRESCREENING= option. If
no variables are left at a particular variable selection level, PROC BNET rolls back to the previous
level. For example, if you specify VARSELECT=3 and there are no variables in the Markov blanket of
the target, PROC BNET uses the variables from the previous level, VARSELECT=2.

If you want to choose the best model among different levels of variable selections, you can specify any
combination of values for the VARSELECT= option and also specify the BESTMODEL option. If
you specify multiple values for the VARSELECT= but you do not specify the BESTMODEL option,
PROC BNET uses the first specified value, and ignores the remaining values.

By default, VARSELECT=1.

AUTOTUNE Statement
AUTOTUNE < options > ;

The AUTOTUNE statement searches for the best combination of values for the ALPHA, INDEPTEST,
MAXPARENTS, MIALPHA, MISSINGINT, MISSINGNOM, NUMBIN, PARENTING, PRESCREENING,
STRUCTURE, and VARSELECT options in the PROC BNET statement.

Table 5.2 summarizes the options that you can specify in the AUTOTUNE statement. For more information
about all options except the TUNINGPARAMETERS= option, see the option’s description in the section
“AUTOTUNE Statement” on page 14 in Chapter 3, “Shared Concepts.” The TUNINGPARAMETERS=
option is described following Table 5.2.

NOTE: Processing the AUTOTUNE statement is computationally expensive and requires a significant
amount of time.

NOTE: If you specify both the AUTOTUNE statement and the BESTMODEL option in the PROC BNET
statement, the AUTOTUNE statement is ignored.



58 4 Chapter 5: The BNET Procedure

Table 5.2 AUTOTUNE Statement Options

Option Description

EVALHISTORY= Specifies how to report the evaluation history of the tuner

FRACTION= Specifies the fraction of observations to use for validation

KFOLD= Specifies the number of folds for k-fold cross validation

MAXBAYES= Specifies the maximum number of points in the kriging model

MAXEVALS= Specifies the maximum number of evaluations

MAXITER= Specifies the maximum number of iterations when
SEARCHMETHOD=GA or SEARCHMETHOD=BAYESIAN

MAXTIME= Specifies the maximum time for all iterations

MAXTRAINTIME= Specifies the maximum time for a model train

NPARALLEL= Specifies the number of parallel sessions

NSUBSESSIONWORKERS= Specifies the number of workers in parallel sessions

OBJECTIVE= Specifies the objective function

POPSIZE= Specifies the population size when SEARCHMETHOD=GA or
SEARCHMETHOD=BAYESIAN

SAMPLESIZE= Specifies the sample size when SEARCHMETHOD=LHS or
SEARCHMETHOD=RANDOM

SEARCHMETHOD= Specifies the search method that the optimizer uses

TARGETEVENT= Specifies the target event for ROC-based calculations

TRAINFRACTION= Specifies the fraction of observations to use for training

TUNINGPARAMETERS= Specifies the custom tuning parameters

USEPARAMETERS= Specifies how to handle the TUNINGPARAMETERS= option

TUNINGPARAMETERS=(suboption | ...| < suboption )
TUNEPARMS=(suboption | ...| < suboption=)

specifies which parameters to tune and which ranges to tune over. If you specify USEPARAME-

TERS=STANDARD, this option is ignored.

You can specify one or more of the following suboptions:

ALPHA (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies information about the significance level for independence tests by using chi-square or
G-square statistics, where number or any value in the value-list must be a real number in the
range O to 1, inclusive. For more information, see the ALPHA= option in the PROC BNET

statement.

You can specify the following additional suboptions:

LB=number

specifies the minimum significance level to consider during tuning. If you specify this

suboption, you cannot specify the VALUES= suboption.
By default, LB=0.01.



AUTOTUNE Statement 4 59

UB=number
specifies the maximum significance level to consider during tuning. If you specify this
suboption, you cannot specify the VALUES= suboption.

By default, UB=0.99.

VALUES=value-list
specifies a list of significance levels to consider during tuning, where value-list is a space-
separated list of numbers in the range O to 1. If you specify this suboption, you cannot
specify either the LB= or UB= suboption.

INIT=number
specifies the initial significance level for the tuner to use.

By default, INIT=0.05.

EXCLUDE
excludes the significance level from the tuning process. If you specify this suboption, any
specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

INDEPTEST (VALUES=value-list INIT=value EXCLUDE)
specifies information about the method to use for independence tests. For more information, see
the INDEPTEST= option in the PROC BNET statement.

You can specify the following additional suboptions:

VALUES=value-list
specifies a list of methods to use for independence tests, where value-list is a space-separated
list of CHIGSQUARE, CHISQUARE, MI, and GSQUARE.

INIT=CHIGSQUARE | CHISQUARE | Ml | GSQUARE
specifies the initial method to use for independence tests.

By default, INIT=CHIGSQUARE.

EXCLUDE
excludes the INDEPTEST suboption from the tuning process. If you specify EXCLUDE,
any specified VALUES= and INIT= suboptions are ignored.

MAXPARENTS (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the maximum number of parents that are allowed for each node
in the network structure. The valid range is 1 to 16, inclusive. For more information, see the
MAXPARENTS= option in the PROC BNET statement.

You can specify the following additional suboptions:

LB=number
specifies a lower bound on the maximum number of parents to consider during tuning. If
you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=1.



60 4 Chapter 5: The BNET Procedure

UB=number
specifies an upper bound on the maximum number of parents to consider during tuning. If
you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=16.

VALUES=value-list
specifies a list of values to consider for the maximum number of parents in the network
structure, where value-list is a space-separated list of numbers. If you specify this suboption,
you cannot specify the LB= and UB= suboptions.

INIT=number
specifies the initial maximum number of parents in the network structure.

By default, INIT=5.

EXCLUDE

excludes the maximum number of parents from the tuning process. If you specify this
suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

MIALPHA (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the threshold for independence tests by using mutual information.
For more information, see the MIALPHA= option in the PROC BNET statement.

You can specify the following additional suboptions:

LB=number
specifies the minimum threshold value to consider during tuning. If you specify this
suboption, you cannot specify the VALUES= suboption.

By default, LB=0.

UB=number
specifies the maximum threshold value to consider during tuning. If you specify this
suboption, you cannot specify the VALUES= suboption.

By default, UB=1.

VALUES=value-list
specifies a list of threshold values to consider during tuning, where value-list is a space-
separated list of numbers in the range O to 1. If you specify this suboption, you cannot
specify the LB= and UB= suboptions.

INIT=number
specifies the initial threshold value for the tuner to use.

By default, INIT=0.05.

EXCLUDE
excludes the threshold value from the tuning process. If you specify this suboption, any
specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.



AUTOTUNE Statement 4 61

MISSINGINT (VALUES=value-list INIT=value EXCLUDE)
specifies information about how to handle missing values for interval variables during the tuning
process. For more information, see the MISSINGINT= option in the PROC BNET statement.

You can specify the following additional suboptions:

VALUES=value-list
specifies a list of values for the tuner to try for the MISSINGINT suboption, where you can

specify IMPUTE or IGNORE (or both) in a space-separated value-list.

INIT=IMPUTE | IGNORE
specifies whether to start tuning by imputing or ignoring missing values of interval variables.

By default, INIT=IGNORE.

EXCLUDE
excludes the MISSINGINT suboption from the tuning process. If you specify EXCLUDE,

any specified VALUES= and INIT= suboptions are ignored.

MISSINGNOM (VALUES=value-list INIT=value EXCLUDE)
specifies information about how to handle missing values for nominal variables during the tuning
process. For more information, see the MISSINGNOM= option in the PROC BNET statement.

You can specify the following additional suboptions:

VALUES=value-list
specifies a list of values for the tuner to handle missing values for nominal variables, where
value-list is a combination of one or more of the following values in a space-separated list:

IMPUTE, IGNORE, and LEVEL.

INIT=IMPUTE | IGNORE | LEVEL
specifies the initial value to use in tuning the MISSINGNOM suboption.

By default, INIT=IGNORE.

EXCLUDE
excludes the MISSINGNOM suboption from the tuning process. If you specify EXCLUDE,

any specified VALUES= and INIT= suboptions are ignored.

NUMBIN (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the number of binning levels for all interval variables. The valid
range is 2 to 20. For more information, see the NUMBIN= option in the PROC BNET statement.

You can specify the following additional suboptions:

LB=number
specifies a lower bound of binning levels to consider during tuning. If you specify this
suboption, you cannot specify the VALUES= suboption.

By default, LB=2.



62 4 Chapter 5: The BNET Procedure

UB=number
specifies an upper bound of binning levels to consider during tuning. If you specify this
suboption, you cannot specify the VALUES= suboption.

By default, UB=20.

VALUES=value-list
specifies a list of values of binning levels to consider, where value-list is a space-separated list
of numbers. If you specify this suboption, you cannot specify the LB= and UB= suboptions.

INIT=number
specifies the initial number of binning levels.

By default, INIT=5.

EXCLUDE
excludes the number of binning levels from the tuning process. If you specify this suboption,
any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

PARENTING (VALUES=value-list INIT=value EXCLUDE)
specifies information about the algorithm for orienting the network structure. For more informa-
tion, see the PARENTING= option in the PROC BNET statement.

You can specify the following additional suboptions:

VALUES=value-list
specifies a list of algorithms for orienting the network structure during tuning, where value-
list is a space-separated list of BESTONE and BESTSET.

INIT=BESTONE | BESTSET
specifies the initial algorithm for orienting the network structure for the tuner to use.

By default, INIT=BESTSET.

EXCLUDE
excludes the algorithm selection for orienting the network structure from the tuning process.
If you specify this suboption, any specified VALUES= and INIT= suboptions are ignored.

PRESCREENING (VALUES=value-list INITzvalue EXCLUDE)
specifies information about the initial screening for the input variables. For more information,
see the PRESCREENING= option in the PROC BNET statement.

You can specify the following additional suboptions:
VALUES=value-list

specifies a list of initial screening values for the input variables, where value-list is a space-
separated list of O and 1.

INIT=number
specifies the initial screening for the input variables.

By default, INIT=1.



CODE Statement 4 63

EXCLUDE
excludes the initial screening for the input variables from the tuning process. If you specify
this suboption, any specified VALUES= and INIT= suboptions are ignored.

STRUCTURE (VALUES=value-list INIT=value EXCLUDE)
specifies information about the network structure. For more information, see the STRUCTURE=
option in the PROC BNET statement.

You can specify the following additional suboptions:

VALUES=value-list
specifies a list of structures, where value-list is a space-separated list of MB, NAIVE, PC,
and TAN.

INIT=MB | NAIVE | PC | TAN
specifies the initial network structure.

By default, INIT=PC.

EXCLUDE
excludes the network structure from the tuning process. If you specify this suboption, any
specified VALUES= and INIT= suboptions are ignored.

VARSELECT (VALUES=value-list INIT=value EXCLUDE)
specifies information about how to select input variables during the tuning process after the
prescreening. For more information, see the VARSELECT= option in the PROC BNET statement.

You can specify the following additional suboptions:

VALUES=value-list
specifies a list of input variables to consider for the tuning process after the prescreening,
where value-list is a space-separated list of 0, 1, 2, and 3.

INIT=number
specifies the initial value to consider for the tuning process after the prescreening.

By default, INIT=1.

EXCLUDE
excludes the VARSELECT suboption from the tuning process. If you specify EXCLUDE,
any specified VALUES= and INIT= suboptions are ignored.

CODE Statement
CODE FILE=filename ;

The CODE statement is optional in PROC BNET. If you use a CODE statement, SAS DATA step code is
generated and stored in a file that can be used for scoring purposes.



64 4 Chapter 5: The BNET Procedure

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency
of occurrence for each observation. The BNET procedure treats each observation as if it appeared » times,
where 7 is the value of the variable for the observation. If n is not an integer, it is truncated to an integer. If
n is less than 1 or is missing, the observation is ignored. When the FREQ statement is not specified, each
observation is assigned a frequency of 1.

ID Statement
ID variables ;

The optional ID statement lists one or more variables from the input data set to be copied to the prediction
output data set. The ID statement accepts both numeric and character variables. The variables in an ID
statement can also appear in any other statements.

INPUT Statement
INPUT variables </LEVEL=INTERVAL | NOMINAL > ;

The INPUT statement specifies one or more variables as input variables. You can specify multiple INPUT
statements. PROC BNET does not support duplicate input variables. If the INPUT statement contains a
duplicate variable, PROC BNET returns an error message and then exits. You can specify the following
option in each INPUT statement:

LEVEL=INTERVAL | NOMINAL
specifies the type of all the variables in the current INPUT statement. You can specify the following

values:
NOMINAL treats all the variables in the current INPUT statement as nominal variables.
INTERVAL treats all the variables in the current INPUT statement as interval variables.

By default, LEVEL=INTERVAL for numeric variables and LEVEL=NOMINAL for categorical
variables.

OUTPUT Statement
OUTPUT OUT=CAS-libref.data-table < options > ;
The OUTPUT statement creates a data table to contain the predicted target values of the input table.

You must specify the following option:



PARTITION Statement 4 65

OUT=CAS-libref.data-table
names the output data table for PROC BNET to use. You must specify this option before any other
options. CAS-libref.data-table is a two-level name, where

CAS-libref refers to a collection of information that is defined in the LIBNAME statement and
includes the caslib, which includes a path to where the data table is to be stored, and
a session identifier, which defaults to the active session but which can be explicitly
defined in the LIBNAME statement. For more information about CAS-libref, see
the section “Using CAS Sessions and CAS Engine Librefs” on page 48.

data-table specifies the name of the output data table.

This table includes variables that are specified either in the COPY VARS= option or in the ID statement.
If you specify PARTITION statement, the output includes one more column, _ROLE_. _ROLE_is a
reserved name. If it exist in the input data table and you specify it in the COPY VARS= option or in the
ID statement, you need to use the ROLE= option to change the generated column’s name.

You can also specify the following options:

COPYVAR=variable

COPYVARS=(variables)
lists one or more variables from the input data table to be copied to the output data table.

ROLE=rolename
renames the generated column _ROLE_ in the output data table to the specified role.

PARTITION Statement
PARTITION partition-option ;

The PARTITION statement specifies how observations in the input data set are logically partitioned into
disjoint subsets for model training, validation, and testing. For more information, see the section “Using
Validation and Test Data” on page 21 in Chapter 3, “Shared Concepts.” Either you can designate a variable in
the input data table and a set of formatted values of that variable to determine the role of each observation, or
you can specify proportions to use for randomly assigning observations to each role.

You must specify exactly one of the following partition-options:

FRACTION(< TEST=fraction> < VALIDATE=fraction> < SEED=number >)

randomly assigns specified proportions of the observations in the input data table to the roles. You
specify the proportions for testing and validation by using the TEST= and VALIDATE= suboptions.
If you specify both the TEST= and VALIDATE= suboptions, then the sum of the specified fractions
must be less than 1 and the remaining fraction of the observations are assigned to the training role. The
SEED= option specifies an integer that is used to start the pseudorandom number generator for random
partitioning of data for training, testing, and validation. If you do not specify SEED=number or if
number is less than or equal to 0, the seed is generated by reading the time of day from the computer’s
clock.



66 4 Chapter 5: The BNET Procedure

ROLE-=variable (< TEST='value' > < TRAIN='value' > < VALIDATE='value' >)

ROLEVAR=variable (< TEST='value' > < TRAIN="value' > < VALIDATE='value' >)
names the variable in the input data table whose values are used to assign roles to each observation.
This variable cannot also appear as an analysis variable in other statements or options. The TEST=,
TRAIN=, and VALIDATE= suboptions specify the formatted values of this variable that are used to
assign observation roles. If you do not specify the TRAIN= suboption, then all observations whose
role is not determined by the TEST= or VALIDATE= suboption are assigned to the training role.

SAVESTATE Statement
SAVESTATE RSTORE=CAS-libref.data-table ;

The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in a data
table. You can use the analytic store in the ASTORE procedure to score new data. For more information, see
Chapter 4, “The ASTORE Procedure.”

You must specify the following option:

RSTORE=CAS-libref.data-table
specifies a data table in which to save the analytic store for the model. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-fable specifies
the name of the output data table. For more information about this two-level name, see the DATA=
option and the section “Using CAS Sessions and CAS Engine Librefs” on page 48.

TARGET Statement
TARGET variable ;

The TARGET statement names the variable that PROC BNET predicts. PROC BNET treats the TARGET
variable as nominal.

The target values are levelized in descending order.

Details: BNET Procedure

Independence Tests

Both variable selection and structure learning require either independence tests between two variables or
conditional independence tests given some other variables. PROC BNET supports independence tests by
using the chi-square statistic, G-square statistic, normalized mutual information, or some combination of
them.

Given two nominal variables X and Y (or interval variables after binning) that have levels r and c, respectively,
the chi-square statistic is computed as



Independence Tests 4 67

Z Z (0,, = E,,)

i=1j =1

where O;; is an observed frequency in a cell of the contingency table of the two variables and E;; is the
expected frequency of the cell. The degrees of freedom for the test is (r — 1) x (¢ — 1). If the p-value of the
test statistic is greater than the specified significance level, the two variables are considered to be independent.

Similarly, the G-square statistic is calculated as

= 22 Z 0;j 1n(0”

i=1j =1

where O;; is an observed frequency, E_ij is the expected frequency, and the degrees of freedom for the test
is (r — 1) x (¢ — 1). If the p-value of the test statistic is greater than the specified significance level, the two
variables are considered to be independent.

The mutual information between X and Y is defined as

p(x,y)
I(X,Y) = § E: ]
(X.Y) pa 1y_lp(x ,¥) In( (x)p(y))

Ohy §:y 10 =1 Oxy

where p(x,y) = is the joint distribution function of X and Y; p(x) = =*=—= and p(y) = T
are the marginal probablhty distributions of X and Y, respectively; and N is the total number of observations
in the training data.

The mutual information is then normalized to be between 0 and 1 as

NI(X,Y) = V1 —e21(X.Y)

where /(X, Y) is the mutual information between X and Y.

If the value of the normalized mutual information is less than the specified significance level, the two variables
are considered to be independent.

to test the conditional independence between two variables X and Y given a subset S of other variables
(X ¢ Sand Y ¢ ), the corresponding statistics are summed for each value combination of S, and the
corresponding degrees of freedom for the chi-square and G-square statistics is (r — 1) x (¢ — 1) x g, where ¢
is the number of value combinations for S.

The following PROC BNET options are related to independence tests:

e The INDEPTEST= option specifies which test statistic or combination of them to use.
e The ALPHA= option specifies the significance level for the chi-square and the G-square statistics.

o The MIALPHA-= option specifies the significance level for the normalized mutual information.



68 4 Chapter 5: The BNET Procedure

Variable Selection

A Bayesian network is a graphical model that consists of two parts, < G, P >, where G is a directed acyclic
graph (DAG) whose nodes correspond to the random variables in U (U is the set of input variables plus the
target variable in PROC BNET and P is a set of local probability distributions, one for each node conditional
on each value combination of the parents). The joint probability distribution of U can be factorized to the
product of the local probability distributions; thatis p(U) = [ xey p(X |7 (X)), where (X)) are the parents
of X. It is assumed that the network structure G and the probability distribution P are faithful to each other;
that is, every conditional independence in the structure G is also present in P, and vice versa.

Given a target variable T, a Markov blanket of T is defined as a subset of input variables MB C U — {T'}
such that T is conditionally independent of each of the remaining input variables X € U — M B — {T'} given
MB. Under the faithful assumption, the Markov blanket of 7T is unique. According to the definition of the
Markov blanket, the probability distribution of T is completely determined by its Markov blanket; therefore,
the Markov blanket can be used for variable selection.

PROC BNET supports two types of variable selection: one by independence tests between each input variable
and the target (when PRESCREENING=1) and the other by conditional independence tests between each
input variable and the target given any subset of other input variables (when VARSELECT=I1, 2, or 3).

PROC BNET uses specialized data structures to efficiently compute the contingency tables for any variable
combination, and it uses dynamic candidate generation to reduce the false candidates (variable combinations).

Structure Learning

In general, there are two approaches to learning the network structure: one is score-based, and the other
is constraint-based. The score-based approach uses a score function to measure how well a structure fits
the training data and tries to find the structure that has the best score. The constraint-based approach uses
independence tests to determine the edges and the directions.

PROC BNET uses both score-based and constraint-based approaches to learn the network structure. It uses
the BIC (Bayesian information criterion) score, which is defined as

n qi i

M
i=1j= =

where G is a network, D is the training data set, N is the number of observations in D, n is the number
of variables, X; is a random variable, r; is the number of levels for X;, v; is the kth value of X;, g; is
the number of value combinations of X;’s parents, 7;; is the jth value combination of X;’s parents, and
M = Y""_,(ri — 1) x g; is the number of parameters for the probability distributions.

PROC BNET uses independence tests to determine the edges and the directions as follows. Assume that
you have three variables, X, Y and Z, and that it has been determined (using independent tests) that there are
edges between X and Z and Y and Z, but no edge between X and Y. If X is conditionally dependent of Y given
any subset of variables S = {Z}J S’,S’ C U —{X,Y, Z}, then the direction between X and Z is X — Z
and the direction between Y and Z is ¥ — Z. Notice that using independence tests alone might not be able



Parameter Learning 4 69

to orient all edges because some structures are equivalent with respect to conditional independence tests. For
example, X <Y «— Z, X - Y — Z,and X < Y — Z belong to the same equivalence class. In these
cases, PROC BNET uses the BIC score to determine the directions of the edges.

PROC BNET learns different types of network structures: naive Bayesian (NB), tree-augmented naive (TAN),
Bayesian network-augmented naive (BAN), parent-child Bayesian network (PC), and Markov blanket (MB).
Based on the network structure that is specified, it uses different algorithms. For example, if you specify
STRUCTURE=TAN, the procedure uses the maximum spanning tree to learn the tree structure, where the
weight for an edge is the mutual information between the two nodes. PROC BNET uses either the BESTONE
or BESTSET value of the PARENTING= option to learn the other network structures (BAN, PC, MB).

PROC BNET orders the input variables based on the BIC score with the target. The BIC score of an input
variable X with the target is defined as

BIC(X, T) = max(BIC(X — T), BIC(T — X))

where BIC(X — T) is the BIC score when X is the parent of T (ignoring all the remaining variables) and
BIC(T — X) is the BIC score when X is the child of T (ignoring all the remaining variables).

PROC BNET learns the parents of the target first for structures PC and MB. Then it learns the parents of
the input variable that has the highest BIC score with the target. It continues learning the parents of the
input variable that has the next highest BIC score, and so on. When learning the parents of a node, it first
determines the edges by using independence tests. Then it orients the edges by using both independence tests
and the BIC score. PROC BNET uses the BIC score not only for orienting the edges but also for controlling
the network complexity, because a complex network that has more parents is penalized in the BIC score.

Both the BESTONE and BESTSET value of the PARENTING= option try to find the local optimum structure
for each node. BESTONE adds the best candidate variable to the parents at each iteration, whereas BESTSET
tries to pick the best set of variables among the candidate sets.

If you have many input variables, structure learning can be time consuming, because the number of variable
combinations is exponential. Therefore, variable selection is strongly recommended.

Parameter Learning

Parameter learning determines the probability distribution for each node in a network structure. In PROC
BNET, the probability distribution is discrete because the interval variables are binned.

You can use the resulting probability distribution table to score an observation (x1, X2, ..., X;,—1) as

argmax, p(T = c|x1,x2,...,xp—1) = pXx1,X2,....,x5=1|T =¢c)x K
= I p(xi|n(X;)) x K

where c is a level of the target variable, 7 (X;) are the parents of X;, K is a constant, and X, = T (target) for
convenience.



70 4 Chapter 5: The BNET Procedure

To estimate the parameters p(x;|7(X;)), PROC BNET uses an additive smoothing technique:

counts_of (xi, pi (X;)) + «

b (xi|m(X;) =
plilm(Xi) counts_of (pi (X;)) + o X n;

where « is the smoothing parameter (¢ = O corresponds to no smoothing, and PROC BNET uses o = 1) and
n; is the number of possible values for X;.

The general reason for smoothing is to avoid overfitting the data. The case where the count of some class
is 0 is just a particular case of overfitting. PROC BNET still smooths the probabilities when every class is
observed.

Displayed Output
The following sections describe the output that PROC BNET produces by default. The output is organized
into various tables, which are discussed in the order of their appearance.

Model Information

The “Model Information” table contains the initial training settings, such as significance level, structure, and
number of bins.

Fit Statistics

The “Fit Statistics” table contains the fit statistics of the Bayesian network.

Number of Observations
The “Number of Observations” table contains the number of observations and the number of observations
used.

Variable Level
The “Variable Level” table contains the details of each level of the variables. The columns include the
observed target, predicted event, predicted nonevent, and total numbers of events or nonevents for the training
data.

Variable Order

The “Variable Order” table contains the order of the input variables based on the BIC score with the target.

Variable Information

The “Variable Information” table contains the variable information such as number of levels, number of
missing values, and so on.



ODS Table Names 4 71

Iteration Report

The “Iteration Report” table contains the variable selection results.

Validation Information

The “Validation Information” table contains the validation results. If the PARTITION statement is speci-
fied, then the misclassification errors mean misclassification errors in the validation data; if not, then the
misclassification errors mean misclassification errors in the training data.

ODS Table Names

Each table that the BNET procedure creates has a name associated with it. You must use this name to refer to
the table when you use the ODS statements. These names are listed in Table 5.3.

Table 5.3 ODS Tables Produced by PROC BNET

Table Name Description Statement Option
FitStatistics Contains the fit statistics of the PROC BNET  Default
network
Modellnfo Contains the initial training PROC BNET  Default
settings, such as significance
level, structure, and number of
bins
NObs Contains the number of PROC BNET  Default
observations for training,
validation and testing, and so on
PredIntoName  Predicted target variable PROC BNET  PRINTTARGET
PredProbName Predicted probability variables PROCBNET  PRINTTARGET
ValidInfo Contains the validation results PROC BNET BESTMODEL
Varlnfo Contains the variable information PROC BNET  Default
such as number of levels, number
of missing values, and so on
VarLevel Contains the details of eachlevel PROC BNET  Default
of the variables
VarOrder Contains the order of the input PROC BNET  Default
variables
VarSelect Contains the variable selection PROC BNET  Default

results




72 4 Chapter 5: The BNET Procedure

Examples: BNET Procedure

Example 5.1: Naive Bayesian Network

This example shows how you can use PROC BNET to learn a naive Bayesian network for the Iris data that is
available in the Sashelp library. The following DATA step loads the Iris data into your CAS session. This
DATA step assumes that your CAS engine libref is named mycas, but you can substitute any appropriately
defined CAS engine libref.

data mycas.iris;
set sashelp.iris;
run;

The following statements specify MAXPARENTS=1, PRESCREENING=0, and VARSELECT=0 to request
that PROC BNET use only one parent for each node and use all the input variables:

proc bnet data=mycas.iris numbin=3 structure=Naive maxparents=1
prescreening=0 varselect=0
outnetwork=mycas.network;
target Species;
input PetalWidth Petallength SepallLength SepalWidth/level=interval;
run;

The following statements produce Output 5.1.1, which shows the network structure. In the structure, Species
is the parent of PetalWidth, PetalLength, SepalLength, and SepalWidth.

proc print data=mycas.network noobs label;
var _parentnode_ _childnode_;
where _type_ ="STRUCTURE";

run;

Output 5.1.1 Naive Bayesian Network Structure

Parent
Node Child Node

Species PetalLength
Species PetalWidth
Species SepallLength
Species SepalWidth

Example 5.2: Tree-Augmented Naive Bayesian Network

This example also uses the Iris data set that is available in the Sashelp library. In the following statements,
STRUCTURE=TAN results in a tree-augmented Bayesian network:

data mycas.iris;
set sashelp.iris;
run;



Example 5.3: Parent-Child Bayesian Network 4 73

proc bnet data=mycas.iris numbin=3 structure=TAN
prescreening=0 varselect=0
outnetwork=mycas.network;
target Species;
input PetalWidth Petallength SepallLength SepalWidth/level=interval;
run;

The following statements produce Output 5.2.1, which shows the network structure. In the structure, Species
is a parent of PetalWidth, PetalLength, SepalLength, and SepalWidth. In addition, PetalWidth is a parent
PetalLength, SepalWidth is a parent of SepalLength, and PetalWidth is a parent of SepalWidth.

proc print data=mycas.network noobs label;
var _parentnode_ _childnode_;
where _type_ ="STRUCTURE";

run;

Output 5.2.1 TAN Network Structure

Parent
Node Child Node

Species PetalLength
PetalWidth PetalLength
Species PetalWidth
Species SepallLength
SepalWidth SepallLength
Species SepalWidth
PetalWidth SepalWidth

Example 5.3: Parent-Child Bayesian Network

This example also uses the Iris data set that is available in the Sashelp library. In the following statements,
STRUCTURE=PC results in a parent-child Bayesian network:

data mycas.iris;
set sashelp.iris;
run;

proc bnet data=mycas.iris numbin=3 structure=PC
prescreening=0 varselect=0
outnetwork=mycas.network;
target Species;
input PetalWidth Petallength SepallLength SepalWidth/level=interval;
run;

The following statements produce Output 5.3.1, which shows the network structure. In the structure,
PetalLength is the parent of Species, and Species is the parent of PetalWidth, SepalLength, and SepalWidth.

proc print data=mycas.network noobs label;
var _parentnode_ _childnode_;
where _type ="STRUCTURE";

run;



74 4 Chapter 5: The BNET Procedure

Output 5.3.1 Parent-Child Network Structure

Parent Node Child Node
PetalLength  Species

Species PetalWidth
Species SepalLength
Species SepalWidth

Example 5.4: Markov Blanket

This example uses the HMEQ sample data set that is available in the Sampsio library to learn a Markov
blanket Bayesian network, which is specified by STRUCTURE=MB:

data mycas.hmeq;
set sampsio.hmeq;
run;

proc bnet data=mycas.hmeq indeptest=MI mialpha=0.2 structure=MB nbin=5
missingint=IMPUTE missingnom=LEVEL
outnetwork=mycas.network;
target Bad;
input Reason Job Deling Derog Ning/level=nominal;
input Loan Mortdue Value Yoj Clage Clno Debtinc/level=interval;
run;

The following statements produce Output 5.4.1, which shows the network structure. In the structure, Bad is a
parent of Deling and Derog, Deling and Ning are the other parents of Derog, and Ninq is the other parent of
Deling.

proc print data=mycas.network noobs label;
var _parentnode_ _childnode_;
where _type_ ="STRUCTURE";

run;

Output 5.4.1 Markov Blanket Network Structure

Parent Child
Node Node

BAD DELINQ
NINQ DELINQ
BAD DEROG
DELINQ DEROG
NINQ DEROG

Example 5.5: Bayesian Network-Augmented Naive Bayesian Network

This example also uses the HMEQ sample data set that is available in the Sampsio library to learn a BAN
structure, which is specified by STRUCTURE=NAIVE:



Example 5.6: Model Selection 4 75

data mycas.hmeq;
set sampsio.hmeq;
run;

proc bnet data=mycas.hmeq numbin=10 alpha=0.1 structure=Naive
missingint=IMPUTE missingnom=LEVEL
outnetwork=mycas.network;
target Bad;
input Reason Job Delinqg Derog Ning/level=nominal;
input Loan Mortdue Value Yoj Clage Clno Debtinc/level=interval;
run;

The following statements produce Output 5.5.1, which shows the network structure. In the structure, Bad is a
parent of Deling, Derog, Job, Ning, Clage, CIno, Loan, and Mortdue. In addition, Deling is the other parent
of Derog, and Job is a parent of both Mortdue and Clno.

proc print data=mycas.network noobs label;
var _parentnode_ _childnode_;
where _type_ ="STRUCTURE";

run;

Output 5.5.1 BAN Network Structure

Parent Child
Node Node

BAD DELINQ
BAD DEROG
DELINQ DEROG

BAD JOB
BAD NINQ
BAD CLAGE
BAD CLNO
JOB CLNO
BAD LOAN

BAD MORTDUE
JOB MORTDUE

Example 5.6: Model Selection

This example uses the German Credit sample data that is available in the Sampsio library to learn the best
Bayesian network model among all network structures: naive, TAN, PC, and MB, with or without variable
selection. PROC BNET also tries to choose the best value for the MAXPARENTS= option. About 30% of
the input data is used for validation.

data dmagecr_ part;
set sampsio.dmagecr;
seed=12345;
if ranuni(seed) < 0.7 then partind=1;
else partind=0;
id=_N_;



76 4 Chapter 5: The BNET Procedure

run;

data mycas.dmagecr;
set dmagecr_part;
run;

proc bnet data=mycas.dmagecr numbin=10 alpha=0.05
structure=Naive TAN PC MB varselect=0 1 bestmodel
outnetwork=mycas.network;
target Good_Bad;
input Checking History Purpose Savings Employed Installp Marital Coapp
Resident Property Other Housing Existcr Job Depends Telephon
Foreign/level=nominal;
input Age Amount Duration/level=interval;
partition rolevar= PartInd (TRAIN='l' VALIDATE='0' TEST='2"');
ods output nobs=nobs fitstatistics=fit validinfo=validinfo;
run;

Output 5.6.1 shows the information of number of observations: 695 observations are used for training and
305 are used for validation.

Output 5.6.1 Model Selection: Number of Observations
The BNET Procedure

Number of Observations
Number of Observations Read 1000
Number of Observations Used 1000
Number of Observations Used for Training 695

Number of Observations Used for Validation 305
Number of Observations Used for Testing 0

Output 5.6.2 shows the fit statistics. In the resulting network, there are 13 nodes and 13 links between the
nodes, and the number of parameters is 129.

Output 5.6.2 Model Selection: Fit Statistics

Fit Statistics
Number of Nodes 13
Number of Links 13
Average Degree 2
Maximum Number of Parents in Network 2
Number of Parameters 129
Score -11092.55
Validation Misclassification Rate 0.23934426

Test Misclassification Rate



Example 5.6: Model Selection 4 77

Output 5.6.3 shows the validation results for each parameter combination. The PC Bayesian network
structure has misclassified 73 observations out of 305 validation observations when VARSELECT=0 and
MAXPARENTS is greater than or equal to 2. The TAN structure has 77 misclassification errors when
VARSELECT=0 and MAXPARENTS=2. The naive Bayesian network has 81 misclassification errors when
VARSELECT=0 and MAXPARENTS is greater than or equal to 2. The MB Bayesian network structure has
113 misclassification errors.

Output 5.6.3 Model Selection: Validation Information

Validation Information
N Observations

Best Misclassification Misclassification for Significance Variable Parenting

Model Rate Errors Assessment Threshold Prescreening Selection Structure Method

Yes 0.23934 73 305 0.05 1 0 PC BestSet
0.23934 73 305 0.05 1 0 PC BestSet
0.23934 73 305 0.05 1 0 PC BestSet
0.23934 73 305 0.05 1 0 PC BestSet
0.25246 77 305 0.05 1 0 TAN BestSet
0.26557 81 305 0.05 1 0 Naive BestSet
0.26557 81 305 0.05 1 0 Naive BestSet
0.26557 81 305 0.05 1 0 Naive BestSet
0.26557 81 305 0.05 1 0 Naive BestSet
0.26885 82 305 0.05 1 1 PC BestSet
0.26885 82 305 0.05 1 1 PC BestSet
0.26885 82 305 0.05 1 1 PC BestSet
0.26885 82 305 0.05 1 1 PC BestSet
0.28197 86 305 0.05 1 0 PC BestSet
0.28197 86 305 0.05 1 0 Naive BestSet
0.34754 106 305 0.05 1 1 PC BestSet
0.34754 106 305 0.05 1 1 Naive BestSet
0.34754 106 305 0.05 1 1 Naive BestSet
0.34754 106 305 0.05 1 1 Naive BestSet
0.34754 106 305 0.05 1 1 Naive BestSet
0.34754 106 305 0.05 1 1 Naive BestSet
0.35738 109 305 0.05 1 1 TAN BestSet
0.37049 113 305 0.05 1 3 MB BestSet
0.37049 113 305 0.05 1 3 MB BestSet
0.37049 113 305 0.05 1 3 MB BestSet
0.37049 113 305 0.05 1 3 MB BestSet
0.37049 113 305 0.05 1 3 MB BestSet



78 4 Chapter 5: The BNET Procedure

Output 5.6.3 continued

Validati
on
Informa
tion
Max N
Parents

2

Uu b W N =2 N U B WN-=2 =2 2000 WN U DM WDNNOG MW

The following statements produce Output 5.6.4, which shows that PROC BNET has learned a PC Bayesian
network structure. In the structure, Checking is the parent of Good_Bad, Housing is the parent of Property,
and Good_Bad is the parent of all the selected input variables except its parent Checking.

proc print data=mycas.network noobs label;
var _parentnode_ _childnode_;
where _type_ ="STRUCTURE";

run;



Output 5.6.4 Model Selection: Best Structure

Parent  Child
Node Node

checking good_bad
good_bad employed
good_bad foreign
good_bad history
good_bad housing
good_bad other
good_bad property
housing  property
good_bad purpose
good_bad savings
good_bad age
good_bad amount
good_bad duration

References 4 79

References

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San

Francisco: Morgan Kaufmann.



80



